翻訳と辞書
Words near each other
・ Weijpoort
・ Weikel, Washington
・ Weikendorf
・ Weiker Airport
・ Weikerlsee
・ Weikersdorf am Steinfelde
・ Weikersheim
・ Weikersheim Castle
・ Weikman Nunataks
・ Weil
・ Weil (river)
・ Weil (surname)
・ Weil algebra
・ Weil am Rhein
・ Weil am Rhein–Lörrach railway
Weil cohomology theory
・ Weil conjecture
・ Weil conjecture on Tamagawa numbers
・ Weil conjectures
・ Weil der Mensch zählt
・ Weil der Stadt
・ Weil der Stadt station
・ Weil group
・ Weil Hall (Gainesville, Florida)
・ Weil ich dich liebe...
・ Weil im Schönbuch
・ Weil McLain
・ Weil pairing
・ Weil reciprocity law
・ Weil restriction


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weil cohomology theory : ウィキペディア英語版
Weil cohomology theory
In algebraic geometry, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups. The name is in honor of André Weil. Weil cohomology theories play an important role in the theory of motives, insofar as the category of Chow motives is universal for Weil cohomology theories in the sense that any Weil cohomology theory factors through Chow motives. Note that, however, the category of Chow motives does not give a Weil cohomology theory since it is not abelian.
==Definition==
A ''Weil cohomology theory'' is a contravariant functor:
::::''H
*
'': →
subject to the axioms below. Note that the field ''K'' is not to be confused with ''k''; the former is a field of characteristic zero, called the ''coefficient field'', whereas the base field ''k'' can be arbitrary. Suppose ''X'' is a smooth projective algebraic variety of dimension ''n'', then the graded ''K-algebra'' ''H
*
(X)'' = ⊕''Hi(X)'' is subject to the following:
#''Hi(X)'' are finite-dimensional ''K''-vector spaces.
#''Hi(X)'' vanish for ''i < 0'' or ''i > 2n''.
#''H2n(X)'' is isomorphic to ''K'' (so-called orientation map).
#There is a Poincaré duality, i.e. a non-degenerate pairing: ''Hi(X)'' × ''H2n−i(X) → H2n(X) ≅ K''.
#There is a canonical Künneth isomorphism: ''H
*
(X)'' ⊗ ''H
*
(Y)'' → ''H
*
(X × Y)''.
#There is a ''cycle-map'': γ''X'': ''Zi(X)'' → ''H2i(X)'', where the former group means algebraic cycles of codimension ''i'', satisfying certain compatibility conditions with respect to functionality of ''H'', the Künneth isomorphism and such that for ''X'' a point, the cycle map is the inclusion Z ⊂ ''K''.
#''Weak Lefschetz axiom'': For any smooth hyperplane section ''j: W ⊂ X'' (i.e. ''W = X ∩ H'', ''H'' some hyperplane in the ambient projective space), the maps ''j
*
: Hi(X)'' → ''Hi(W)'' are isomorphisms for ''i ≤ n-2'' and a monomorphism for ''i ≤ n-1''.
#''Hard Lefschetz axiom'': Again let ''W'' be a hyperplane section and ''w'' = γ''X''(''W'') ∈ ''H''2''(X)''be its image under the cycle class map. The ''Lefschetz operator'' ''L: Hi(X)'' → ''Hi+2(X)'' maps ''x'' to ''x·w'' (the dot denotes the product in the algebra ''H
*
(X)''). The axiom states that ''Li: Hn−i(X) → Hn+i(X)'' is an isomorphism for ''i=1, ..., n''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weil cohomology theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.